
Spatial track: motion modeling

Virginio Cantoni

Computer Vision and Multimedia Lab

Università di Pavia

Via A. Ferrata 1, 27100 Pavia

virginio.cantoni@unipv.it

http://vision.unipv.it/va

1

mailto:virginio.cantoni@unipv.it


2

Comparison between Motion and Stereo Analysis 

 Stereo: two or more frames

 Motion: N frames

baseline

time

•The baseline is usually larger in 

stereo than in motion:
• Motion disparities tend to be 

smaller

•Stereo images are taken at the 

same time:
• Motion disparities can be due 

both to scene and camera 

motion

• There can be more than one 

transformation between 

frames



Ill-posed problem
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 As an illustrative example, positively using this limitation 
to attract attention, consider the barber-shop banner 
usually displayed outdoors in many countries.

 Typically, a rotation movement of a 3-coloured striped 
pattern on a cylinder, perceptually suggests that the 
whole pattern is translated vertically upwards.

 A rotational movement of a homogeneous sphere cannot 
be perceived, meanwhile a still sphere is perceived 
rotating if the source of light is rotating around.



Motion versus stereo analysis: correspondences

 Small displacements
• differential algorithms
• based on gradients in space and time
• dense correspondence estimates
• most common with video

 Large displacements
• matching algorithms
• based on correlation or features
• sparse correspondence estimates
• most common with multiple cameras/stereo
• Correspondence types

• point correspondences
• line correspondences
• curve correspondences
• region correspondences
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Why Multitude of Formulations?

 How is the camera moving?  
• the camera can be stationary
• execute simple translational motion
• undergo general motion with both translation and rotation

 How many moving objects are there? 

• the object(s) can be stationary

• execute simple 2D motion parallel to the image plane

• undergo general motion with both 3D translation and rotation
• Which directions are they moving in?
• How fast are they moving?
• Can we recognize their type of motion (e.g. walking, running, etc.)? 

 The camera motion may be known or unknown 

 The shape of the object may be known or unknown

 The motion of the object may be known or unknown

 etc. etc. ...



Classes of Techniques

 Feature-based methods
• extract visual features (corners, textured areas) and track 

them

• sparse motion fields, but possibly robust tracking

• suitable especially when image motion is large (10s of pixels)

 Direct-methods
• directly recover image motion from spatio-temporal image 

brightness variations

• global motion parameters directly recovered without an 
intermediate feature motion calculation

• dense motion fields, but more sensitive to appearance 
variations

• suitable for video and when image motion is small (< 10 pixels)

Szeliski



Classes of Techniques and Motion Models

 Motion models exploit two different invariants:
• in the first one, peculiar object points are assumed to be recovered from one 

image to the next

• in the second all visible-point intensities are supposed to be maintained along 
time.

 Two different approaches of motion are distinguished, respectively named 
discrete or sparse and continuous or dense: 

• motion via correspondence 

• motion via local change 

 In the first case corresponding points must be found on different 
successive images. Note that, in stereo vision, to evaluate the position in 
space, point correspondences must be similarly found from different 
images taken simultaneously. 

 In the second case, a simple local analysis on the whole image must be 
performed with the limitation that only one motion component may be 
detected, the one orthogonal to the image contour.
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Global Flow

• Dominant motion in the image
• motion of all points in the scene

• motion of most of the points in the scene

• component of motion of all points in the scene

• Global motion is caused by 
• motion of sensor (Egomotion)

• motion of a rigid scene

• Estimation of global motion can be used to
• image alignment (Registration)

• removing camera jitter

• tracking (by neglecting/eliminating camera motion)

• video segmentation etc.



Motion Detection and Estimation in Literature

 Image differencing
• based on the thresholded difference of successive images 

• difficult to reconstruct moving areas

 Background subtraction
• foreground objects result by calculating the difference between an 

image in the sequence and the background image (previously 
obtained)

• remaining task: determine the movement of these foreground 
objects between successive frames

 Block motion estimation
• calculates the motion vector between frames for sub-blocks of the 

image

 Pointwise motion estimation: OPTICAL FLOW
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Motion Field (MF)

 The MF assigns a velocity vector to each pixel in the image.

 These velocities are INDUCED by the RELATIVE MOTION btw 
the camera and the 3D scene

 The MF can be thought as the projection of the 3D velocities on 
the image plane.

 Examples of MF:

Forward motion Rotation Horizontal 
translation

Closer objects 
appear to move 

faster!!



Occlusion

occlusion disocclusion shear

Multiple motions within a finite region.



Forms of motion

Translation at constant distance from 
the observer.

Set of parallel 
motion vectors.

Translation in depth relative to the 
observer.

Set of vectors 
having common 
focus of expansion.

Rotation at constant distance from 
view axis.

Set of concentric 
motion vectors.

Rotation of planar object 
perpendicular to the view axis.

One or more sets of 
vectors starting 
from straight line 
segments.



Motion field and parallax

• P(t) is a moving 3D point

• Velocity of scene point: V = dP/dt

• p(t) = (x(t),y(t)) is the projection of 
P in the image

• Apparent velocity v in the image: 
given by components vx = dx/dt and 
vy = dy/dt

• These components are known as the 
MF of the image

p(t)

p(t+dt)

P(t)

P(t+dt)
V

v



Motion field
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To find image velocity v, differentiate 
p with respect to t (using quotient rule):

Image motion is a function of both the 
3D motion (V) and the depth of the 3D 
point (Z)

Quotient rule: 
D(h/g) = (g h’ – g’ h)/g2
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Preliminaries for motion analysis
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 If A or B are moving objects with velocity 
components vx , vy , vz in 3D space, the 
corresponding velocity of the A or B
image points, may be computed as follows:

 The object speed in the scene is not 
known a-priori so that it must be 
estimated by the detected movement of 
the object projection on the image.

 Unfortunately, this problem is ill-posed 
since it is seldom possible to compute the 
object speed in space only knowing the 
planar displacement of its projections.

Image plane



Motion field and parallax
• Pure translation: V is constant everywhere

• Every motion vector points toward (or away from) v0, 
the vanishing point of the translation direction

• The length of the motion vectors is inversely proportional to the 
depth Z



Motion modeling: egomotion

 In many applications, a significant 
feature of the scene to be 
analyzed is the movement of some 
objects during a time interval. 

 Such apparent movements may be 
due either to the image sensor, as 
in an airplane photographic 
campaign (egomotion), or to some 
scene components, as cars in a 
road scenario, or both. 

 First, egomotion is evaluated and 
compensated next the camera is 
assumed to remain still.

19



Figure from Michael Black, Ph.D. Thesis

Length of flow vectors 
inversely proportional to 
depth Z of 3d point

points closer to the 
camera move more quickly 
across the image plane

Motion field due to camera motion



Egomotion
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 the OPTICAL FLOW is istrumental at evaluating the shape 
and position of still components from their apparent motion 
due to the camera movement (egomotion). The sketch shows 
a camera downwards shift along the Z axis. 

 Thanks to the relativity of perception it is equivalent to 
assume that the camera is still and the scene moves in the 
opposite direction along the Z axis. In this way, while the P
point belonging to the ZY plane moves vertically down by 
∆P, its corresponding image point P moves along the Y axis 
by ∆Y. Considering the triangle similarity:

and

so that the distance Z may be derived considering that dZ
is the known motion of the camera and (Y, dY) is 
determined from the image:

and consequently the collision time.
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Egomotion: collision time
 The apparent movements are radial centered on the focus of expansion 

(FOE). 

 A collision time (camera/object) could be estimated: the displacement dY 
with respect to the focus of expansion has the same relationship as the 
displacement along the Z axis with respect to the focal plane.

 For a camera having general velocity with components u, v and w 
respectively along the X, Y and Z axis, the generic object point Xo, Yo, 
Zo will be displaced on the image as:

 In order to compute the coordinates of the final/original destination of 
the moving point we may evaluate these for t= ±∞ so obtaining the focus 
of expansion/contraction coordinates:

and consequently the collision time.
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Camera and egomotion

 The egomotion makes all still objects in 
the scene to verify the same motion 
model defined by three translations T
and three rotations . Conversely, mobile 
obstacles pop out as not resorting to the 
former dominating model.

 Under such assumptions, the following 
classical equations hold:

 where                                                     
stands for the 2-D velocity vector of the 
pixel under the focal length f.
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From egomotion toward object speed
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Detected
speeed

Average
speed

Deviation due to
the weighted
object speed



Motion via correspondences

 Normally, peculiar points on the first image 
are located so as to search their 
corresponding points on the second image. 

 As in the triangulation for stereovision, there 
is no guarantee that such corresponding points 
exist and the new point of view may not include 
such points, moved out of the field of view. 

 The object is first considered as a rigid one 
and therefore without plastic distortion and 
the background is regarded as stationary. 

 In order to reduce the computational cost, the 
number of points is limited to the truly 
characteristic ones. 

 Similarly to the epipolar segment for 
stereovision, the corresponding points are 
searched in a restricted area determined by a 
few heuristics.

 Primal sketch: locate the position of a pixel in 
the current image having similarity and the 
shortest Euclidean distance with respect to a 
point in the previous frame.
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Even “impoverished” motion data can 
evoke a strong percept

30 points               10 points



Patch Matching

Where did each pixel in image 1 go to in image 2



Local Patch Analysis

 How certain are the motion estimates?

Szeliski
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(revisited)

 How do we determine correspondences?

• block matching or SSD (sum squared differences)
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Patch matching: correlation window size

 How do we determine correspondences?

• block matching or SSD (sum squared differences)

 Small windows lead to more false matches
 Large windows are better this way, but…

• neighboring flow vectors will be more correlated (since the 
template windows have more in common)

• flow resolution also lower (same reason)
• more expensive to compute

 Small windows are good for local search: more detailed 
and less smooth 

 Large windows good for global search: less detailed and 
smoother



Maximum velocity

 A generic central object point can be located in the successive frame 
within a circle with a radius equal to Vmax ∆t, where Vmax is the  highest 
possible velocity of such point:
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Obstacles

 The previous circular field is also limited by existing obstacles 
and physical boundaries contained in the scene
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Maximum acceleration

 An extrapolation can enable TRACKING the object point in 
successive frames.

 The velocity detected in the two previous frames may be 
exploited to foresee the future position of the object point (time 
filtering). Same as before, a displacement will be inside a circle 
of radius equal to ½ Amax Dt2 where Amax is the maximum 
acceleration;
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Consistent matching

 Object points do not likely coalesce into one single point of the 
following frame, leading to the so-called consistent matching
criterion. The picture shows four identified points that force the 
correspondence of the fifth dark one 
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Common motion

 Common motion (Global Flow) situation: once the motion of the 
neighbors has been identified, the dark point necessarily maps 
into a congruent position (the depicted case is an expansion 
centered in the figure window)
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Flexible motion model

 motion model for a ‘herd’ of points suggesting the most plausible 
displacement of the dark object point.
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Robust estimation: outliers

Standard Least Squares Estimation allows too much influence 

for outlying points
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Least-squares estimators penalize deviations between 
data & model with quadratic error (extremely sensitive to 
outliers)

Redescending error functions (e.g., Geman-McClure) help 
to reduce the influence of outlying measurements.
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Motion global models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

Szeliski



Traslation and Affine
Translation

2 unknowns

Affine

6 unknowns



Planar perspective

Perspective

8 unknowns
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Tracking as induction
 Make a measurement starting in the 0th frame

 Then:  assume you have an estimate at the 1th frame, after the 
measurement step.

 Show that you can do prediction for the i+1th frame, and 
measurement for the i+1th frame.

 Run two filters, one moving forward, the other backward in time.

 Now combine state estimates
 It is possible to iterate: we can obtain a smoothed estimate by viewing 

the backward filter’s prediction as yet another measurement for the 
forward filter
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Problem definition:  optical flow

 How to estimate pixel motion from image H to image I?

• Solve pixel correspondence problem
– given a pixel in H, look for nearby pixels of the same color in I

 Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy

• small motion:  points do not move very far

 This is called the optical flow problem
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Brightness Constancy
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Motion via local change

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Optical flow: mathematical formulation
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Optical flow constraint equation :
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The brightness constancy constraint



 The component of the motion perpendicular to the gradient (i.e., 
parallel to the edge) cannot be measured

 If [u,v] satisfies the equation, so does [u+u’, v+v’ ] if
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Optical flow
 X corresponds to the location examined along 

a given spatial coordinate while four straight 
lines materialize four potential grey level 
variations (linearized) on the object. 

 Bold lines show the grey level pattern due to 
the object displacement. 

 If the object point moves along a direction 
having constant grey level, no variation can be 
detected. 

 The higher the gradient value the greater the 
grey level variation due to motion, so that the 
movement along the gradient direction be 
evaluated easily in accordance through it: the 
apparent movement is inversely weighted with 
the gradient intensity. 
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 The information obtained via this approach only refers to the orthogonal direction 
with respect to the contour and a number of algorithms along the years, have been 
given to provide a more detailed movement information.



Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT 

Optical flow

Vector field function of the 
spatio-temporal image 
brightness variations 



Optical Flow

Pierre Kornprobst's Demo 



Optical Flow Examples

Translation Rotation Traslation + Scaling



Aperture Problem

In degenerate local regions, only the normal velocity is measurable.
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The aperture problem



 MF of a pilot looking to the right. 
FoE is off at infinity to the left 
or FoC is off to the right

 MF with a plane parallel to the 
ground FoE at infinity on the 
horizon.

 MF during landing FoE on the 
pont of impact.
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Optical Flow as seen from an aircraft 



Example
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OF results
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Example
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Of results
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Optical Flow: Iterative Refinement

xx0

Initial guess: 

Estimate:

estimate 
update

 Estimate velocity at each pixel using one iteration of Lucas and 
Kanade estimation. Refine estimate by repeating the process
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Optical Flow: Iterative Estimation

xx0

estimate 
update

Initial guess: 

Estimate:
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Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

Initial guess: 

Estimate:

estimate 
update
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Optical Flow: Iterative Estimation

xx0
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 
(no aliasing)

nearest match is 
incorrect (aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift



Computing Optical Flow: Improvements

 Larger motion: how to maintain “differential” approximation?
• Solution: iterate

 Even better: adjust window / smoothing
• Early iterations: use larger Gaussians to allow more motion 

• Late iterations: use less blur to find exact solution, lock on to high-
frequency detail



Revisiting the Small Motion Assumption

 Is this motion small enough?
• Probably not—it’s much larger than few pixels (2nd order terms dominate)
• How might we solve this problem?
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SSD Surface -- Edge
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SSD Surface – Textured area
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SSD – homogeneous area



Reduce the Resolution!



Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine Optical Flow Estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative OF

run iterative OF

upsample

.

.

.

Coarse-to-fine Optical Flow Estimation



J Jw Iwarp refine

inV

VD

+

J Jw Iwarp refine

V

VD+

J

pyramid 
construction

J Jw Iwarp refine

VD+

I

pyramid 
construction

outV

Coarse-to-fine estimation
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Optical Flow Assumptions: spatial coherence

 Assumption
• Neighboring points in the scene typically belong to the same surface 

and hence typically have similar motions. 

• Since they also project to nearby points in the image, we expect 
spatial coherence in image flow. 

SurfaceImage



Deployment of Video segmentation

• Segment the video into multiple coherently moving objects
• background subtraction

• boundary detection

• motion segmentation



Layered Representation

Estimate dominant motion parameters

Reject pixels which do not fit

Convergence

Restart on remaining pixels

 For scenes with multiple motions, for each one:
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Layered motion
 Break image sequence up into “layers”:

 =

 Describe each layer’s motion, for each layer:
• stabilize the sequence with the affine motion

• compute median value at each pixel

 Determine occlusion relationships

J. Y. A. Wang and E. H. Adelson



Image Data Sets

 Poor resolution

 Amount of occlusion

 Low contrast 

 Velocities ~2 p/f

 Primarily dilational

 Velocities <1 pixel/ 
frame

 The cube is rotating 
counterclockwise on a 
turntable 

 Velocities on the 
table 1.2~1.4 p/f 

 Velocities on the 
cube 0.2~0.5 p/f

 Four moving objects

 Speeds
• Taxi 1.0 p/f

• Car 3.0 p/f

• Van 3.0 p/f

• Pedestrian 0.3 p/f



Results: Horn-Schunck



Results: Lucas-Kanade



Other break-downs

 Brightness constancy is not satisfied

 A point does not move like its neighbors 
• what is the ideal window size?

 The motion is not small (Taylor expansion doesn’t hold)

Correlation based methods

Regularization based methods

Use multi-scale estimation

Non-rigid 
texture motion

The screen is 
stationary yet 
displays motion

Homogeneous 
objects 

generate zero 
optical flow.

Fixed sphere. 
Changing light 
source.

Degenerated 
local regions



Optical Flow:
Where do pixels move to?


